CS 188: Artificial Intelligence Spring 2010

Lecture 16: Bayes' Nets III - Inference

3/11/2010

Pieter Abbeel - UC Berkeley
Many slides over this course adapted from Dan Klein, Stuart Russell, Andrew Moore

Announcements

- Current readings
- Require login
- Assignments
- W3 back today in lecture
- W4 due tonight
- Midterm
- 3/18, 6-9pm, 0010 Evans --- no lecture on 3/18
- We will be posting practice midterms
- One page note sheet, non-programmable calculators
- Topics go through today, not next Tuesday

Bayes' Net Semantics

- Let's formalize the semantics of a Bayes' net
- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
- A collection of distributions over X, one for
 each combination of parents' values

$$
P\left(X \mid a_{1} \ldots a_{n}\right)
$$

$P\left(X \mid A_{1} \ldots A_{n}\right)$

- CPT: conditional probability table
- Description of a noisy "causal" process

A Bayes net = Topology (graph) + Local Conditional Probabilities

Probabilities in BNs

$\left.\forall i: P\left(x_{i} \mid x_{1}, x_{i-1}\right)=P\left(x_{i}\right) P\left(x_{1}\right)\right)$

- For all joint distributions, we have (chain rule):
$\longrightarrow P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)$
- Bayes' nets implicitly encode joint distributions
- As a product of local conditional distributions
- To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:
$\longrightarrow P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right) \quad \& \quad \&$
- This lets us reconstruct any entry of the full joint
- Not every BN can represent every joint distribution
- The topology enforces certain conditional independencies

Example

$$
\begin{aligned}
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}
\end{aligned}
$$

Conditional independence base cases
$p\left(x_{5}\left|x_{1} \ldots x_{4}\right|=p\left(x_{r} \mid x_{n}\right)\right.$

- Causal chain
(8) -(9) -(2) $x \| z / y$
- Common cause

$x \Perp z l y$
- Common effect

- Fully connected $(X) \rightarrow(9) \quad P(X|P| Y|X| P(2 \mid Y, X)$
- Fully disconnected 00

Reachability

- Recipe: shade evidence nodes
$0 \rightarrow 0 \rightarrow 0$
- Attempt 1: if two nodes are connected by an undirected path not blocked by a shaded node, they are conditionally independent
- Almost works, but not quite
- Where does it break?
- Answer: the v-structure at T doesn't
 count as a link in a path unless "active"

Reachability (D-Separation)

- Question: Are X and Y
\rightarrow conditionally independent given evidence vars $\{Z\}$?
- Yes, if X and Y "separated" by Z
\rightarrow Look for active paths from X to Y
- No active paths = independence!
- A path is active if each triple is active:
- Causal chain $\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C}$ where B is unobserved (either direction)
- Common cause $\mathrm{A} \leftarrow \mathrm{B} \rightarrow \mathrm{C}$ where B is unobserved
- Common effect (aka v-structure) $A \rightarrow B \leftarrow C$ where B or one of its descendents is observed
- All it takes to block a path is a single inactive segment

Example

$R \Perp B$	Yes
$R \Perp B \mid T$	MO
$R \Perp B \mid T^{\prime}$	MO

Example

\longrightarrow	$L \Perp T^{\prime} \mid T$	Yes
	$L \Perp B$	Yes
	$L \Perp B \mid T$	Yo
	$L \Perp B \mid T^{\prime}$	
	$L \Perp B \mid T, R$	Yes

$$
\left.\begin{array}{rl}
\Perp B \mid T, R & \text { Yes } \\
p & P(L=C, B=b \mid T=t, R=r) \\
& =P(L=(T=t, R=r) \cdot P(B=b \mid T=t, \\
\hline 12
\end{array}\right)
$$

Example

- Variables:

- R: Raining
- T: Traffic
- D: Roof drips
- S: I'm sad
- Questions:
$\rightarrow T \Perp D$

$\rightarrow T \Perp D \mid R \quad$ Yes
$T \Perp D \mid R, S \quad$ ^o

\rightarrow Causality?

- When Bayes' nets reflect the true causal patterns: $P(0|t|$
- Often simpler (nodes have fewer parents)
- Often easier to think about
- Often easier to elicit from experts

- BNs need not actually be causal
- Sometimes no causal net exists over the domain
- E.g. consider the variables Traffic and Drips
- End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
- Topology may happen to encode causal structure
- Topology only guaranteed to encode conditional independence

$$
P\left(x_{i} \mid P a\left(x_{i}\right)\right)=P\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)
$$

Example: Traffic AB

- Basic traffic net
- Let's multiply out the joint

(1)
\oplus^{\oplus}

Example: Reverse Traffic

- Reverse causality?

Changing Bayes' Net Structure

- The same joint distribution can be encoded in many different Bayes' nets
- Causal structure tends to be the simplest
- Analysis question: given some edges, what other edges do you need to add?
- One answer: fully connect the graph
- Better answer: don't make any false conditional independence assumptions

Bayes Nets Representation Summary

- Bayes nets compactly encode joint distributions
- Guaranteed independencies of distributions can be deduced from BN graph structure
- D-separation gives precise conditional independence guarantees from graph alone
- A Bayes' net's joint distribution may have further (conditional) independence that is not detectable ${ }^{\oplus}$ until you inspect its specific distribution

Inference

- Inference: calculating some useful quantity from a joint probability distribution
- Examples:
- Posterior probability:

$$
\longrightarrow P(Q \mid \underbrace{E_{1}=e_{1}, \ldots E_{k}=e_{k}})
$$

- Most likely explanation:

$\rightarrow 0$

$$
\operatorname{argmax}_{q} P\left(Q=q \mid E_{1}=e_{1} \ldots\right)
$$

Inference by Enumeration
$+\quad+p\left(b_{1}+j_{1}+m_{1}, 7,+a\right)$

- Given unlimited time, inference in BNs is easy
- Recipe:
- State the marginal probabilities you need
- Figure out ALL the atomic probabilities you need
- Calculate and combine them
- Example:

$$
\begin{gathered}
P(+b \mid \widetilde{+j,+m})=\quad \sigma \\
\quad \rightarrow \frac{P(+b,+j,+m)}{P(+j,+m)_{R}}
\end{gathered}
$$

22

Example: Enumeration

- In this simple method, we only need the BN to synthesize the joint entries

$$
\begin{aligned}
& P(+b,+j,+m)= \\
& \quad P(+b) P(+e) P(+a \mid+b,+e) P(+j \mid+a) P(+m \mid+a)+ \\
& P(+b) P(+e) P(-a \mid+b,+e) P(+j \mid-a) P(+m \mid-a)+ \\
& \\
& P(+b) P(-e) P(+a \mid+b,-e) P(+j \mid+a) P(+m \mid+a)+ \\
& \\
& P(+b) P(-e) P(-a \mid+b,-e) P(+j \mid-a) P(+m \mid-a)
\end{aligned}
$$

Inference by Enumeration?

